Contents
raw book

Arc Length of a Function

Robert Eisele

Let f(x)f(x) be a differentiable function defined over the interval [a,b][a, b] with its derivative f(x)f'(x) being continous. Such functions are also called smooth. Our goal is to calculate the arc length of that function from point (a,f(a))(a,f(a)) to point (b,f(b))(b,f(b)).

xx
yy
aa
bb
f(a)f(a)
f(b)f(b)

We start by approximating the curve using line segments. To do so, we create a regular partition X={a=x0,x1,...b=xn}X=\{a=x_0, x_1, ... b=x_n\}. Now for each point Pi=(xi,f(xi))P_i=(x_i, f(x_i)) we construct line segments from point PiP_i to Pi+1P_{i+1}.

xx
yy
f(x0)f(x_0)
x0x_0
f(x1)f(x_1)
x1x_1
f(x2)f(x_2)
x2x_2
f(x3)f(x_3)
x3x_3
f(x4)f(x_4)
x4x_4

To find the length PiPi1|P_i - P_{i-1}| of each line segment, we need to look at the horizontal and vertical change over the distance of each interval [xi1,xi][x_{i-1}, x_i]. Since we use a regular partition, the horizontal change is Δx=xixi1=ban\Delta x = x_i - x_{i-1} = \frac{b-a}{n}. The vertical change in distance depends on the function value, so Δyi=f(xi)f(xi1)\Delta y_i=f(x_i)-f(x_{i-1}).

xx
yy
xi1x_{i-1}
xix_{i}
Δyi\Delta y_i
Δx\Delta x
f(xi1)f(x_{i-1})
f(xi)f(x_i)

The length of the line segment can be calculated using Pythagorean Theorem:

PiPi1=(Δx)2+(Δyi)2|P_i - P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y_i)^2}

By Mean Value Theorem we know there is a point xi[xi1,xi]x^*_i\in[x_{i-1}, x_i] such that

f(xi)=f(xi)f(xi1)xixi1=ΔyiΔx\begin{array}{rl} f'(x_i^*) &= \frac{f(x_i) - f(x_{i-1})}{x_i-x_{i-1}}\\ &= \frac{\Delta y_i}{\Delta x} \end{array}

Therefore the length of each line segment can be expressed as

PiPi1=(Δx)2+(Δyi)2=(Δx)2+(Δx)2(ΔyiΔx)2=(Δx)2[1+(ΔyiΔx)2]=Δx1+(ΔyiΔx)2=Δx1+[f(xi)]2\begin{array}{rl} |P_i - P_{i-1}| &= \sqrt{(\Delta x)^2 + (\Delta y_i)^2}\\ &= \sqrt{(\Delta x)^2 + (\Delta x)^2\left(\frac{\Delta y_i}{\Delta x}\right)^2}\\ &= \sqrt{(\Delta x)^2 \left[ 1+\left(\frac{\Delta y_i}{\Delta x}\right)^2\right]}\\ &= \Delta x\sqrt{1+\left(\frac{\Delta y_i}{\Delta x}\right)^2}\\ &= \Delta x\sqrt{1+\left[f'(x_i^*)\right]^2}\\ \end{array}

Summing over the lengths of the line segments approximates the arc length of the curve already

Li=1nPiPi1=i=1n1+[f(xi)]2Δx\begin{array}{rl} L &\approx \sum\limits_{i=1}^n |P_i - P_{i-1}|\\ &= \sum\limits_{i=1}^n \sqrt{1+\left[f'(x_i^*)\right]^2}\Delta x \end{array}

The approximation gets better and better the larger nn becomes. Taking the limit as nn\to\infty we get a Riemann sum that can be translated to a definite integral, which allows us to calculate the exact arc length of the curve

L=limni=1n1+[f(xi)]2Δx=ab1+[f(x)]2dx\begin{array}{rl} L &= \lim\limits_{n\to\infty}\sum\limits_{i=1}^n \sqrt{1+\left[f'(x_i^*)\right]^2} \Delta x\\ &= \int_a^b \sqrt{1+\left[f'(x)\right]^2} dx \end{array}