Given the real or complex-valued function \(F(x) = xe^x\), the Lambert W function\(W(y)\) or the product logarithm is the inverse of \(F(x)\).
Definition of Lambert W function
The Lambert W function can be defined as:
\[\begin{array}{rrl} & F(x) &= xe^x\\ \Leftrightarrow & F^{-1}(F(x)) &= F^{-1}(xe^x)\\ \Leftrightarrow & W(F(x)) &= W(xe^x)\\ \Leftrightarrow & x &= W(xe^x) \end{array}\]
or equivalently
\[W(y)e^{W(y)} = y\]
From the definion the following properties can be derived
\[W(0) = 0\]
\[W(e) = 1\]
\[W'(0) = 0\]
\[a e^{-W(a)} = W(a)\]
Lambert W function Calculator
\(W(\)\() = W( x\cdot e^x) = x \approx\)0.5671432904097838
Solving Equations using Lambert W Function
Solving \(a^x + bx = c\)
\[\begin{array}{rrl} & a^x + bx &= c\\ \Leftrightarrow & a^x &= c - bx\\ \Leftrightarrow & \frac{a^x}{b} &= \frac{c}{b} - x\\ \Leftrightarrow & \frac{1}{b} &= (\frac{c}{b} - x) \cdot a^{-x}\\ \Leftrightarrow & \frac{a^{c/b}}{b} &= (\frac{c}{b} - x) \cdot a^{\frac{c}{b} - x}\\ \Leftrightarrow & \frac{a^{c/b}}{b} &= (\frac{c}{b} - x) \cdot e^{\log(a)\cdot(\frac{c}{b} - x)}\\ \Leftrightarrow & \log(a)\cdot \frac{a^{c/b}}{b} &= \log(a)\cdot(\frac{c}{b} - x) \cdot e^{\log(a)\cdot(\frac{c}{b} - x)}\\ \Leftrightarrow & W\left(\log(a)\cdot \frac{a^{c/b}}{b}\right) &= \log(a)\cdot(\frac{c}{b} - x)\\ \Leftrightarrow & x &= \frac{c}{b} - \frac{W\left(\log(a)\cdot \frac{a^{c/b}}{b}\right)}{\log(a)}\\ \end{array}\]
Solving \(x^a \cdot b^x = c\)
\[\begin{array}{rrl} &x^a \cdot b^x &= c\\ \Leftrightarrow & x \cdot b^{x/a} &= c^{1/a}\\ \Leftrightarrow & \frac{x}{a} \cdot b^{x/a} &= \frac{c^{1/a}}{a}\\ \Leftrightarrow & \log(b) \cdot \frac{x}{a} \cdot e^{\log(b) \cdot x/a} &= \log(b) \cdot \frac{c^{1/a}}{a}\\ \Leftrightarrow & \log(b) \cdot \frac{x}{a} &= W\left(\log(b) \cdot \frac{c^{1/a}}{a}\right)\\ \Leftrightarrow & x &= \frac{a \cdot W\left(\log(b) \cdot \frac{c^{1/a}}{a}\right)}{\log(b)}\\ \end{array}\]
Example \(x=W(1)=\Omega\)
Using Newton’s method, we are looking for the root of
\[f(x) = xe^x - 1\]
which stems from the definition with \(y=1\):
\[xe^x=1 \Leftrightarrow xe^x-1=0\]
The root of \(f(x)\) should be on \((0, 1)\), which we conclude by the Intermediate value theorem, since probing the function with the interval boundaries gives
\[\begin{array}{l} f(0) = 0\cdot e^0 - 1 < 0\\ f(1) = 1\cdot e^1 - 1 > 1 \end{array}\]
Therefore the desired \(\Omega\) should be between 0 and 1. Applying Newtons method using the derivative \(f'(x)= (x+1)e^x = xe^x+e^x\):
\[\begin{array}{rl} x_{n+1} &= x_n - \frac{f(x_n)}{f'(x_n)}\\ &= x_n - \frac{x_ne^{x_n}-1}{x_ne^{x_n}+e^{x_n}}\\ &= \frac{x_n^2 + e^{-x_n}}{x_n + 1} \end{array}\]
And get the following approximation:
\[ x_{1}=0.50000\dots\\x_{2}=0.57102\dots\\x_{3}=0.56716\dots\\x_{4}=0.56714\dots\\x_{5}=0.56714\dots\\ \]
Therefore the Omega Constant that satisfies \(\Omega e^\Omega = 1\) is approximately \(\Omega \approx 0.567143\)
Example \(x^x=2\)
\[\begin{array}{rrl} &x^x &= 2\\ \Leftrightarrow&\ln(x^x) &= \ln(2)\\ \Leftrightarrow&x\ln(x) &= \ln(2)\\ \Leftrightarrow&\ln(x) e^{\ln(x)} &= \ln(2)\\ \Leftrightarrow&W(\ln(x) e^{\ln(x)}) &= W(\ln(2))\\ \Leftrightarrow&\ln(x) &= W(\ln(2))\\ \Leftrightarrow&x&= e^{W(\ln(2))}\\ \Leftrightarrow& x & \approx 1.55961047 \end{array}\]
Example \(x = \ln(4x)\)
\[\begin{array}{rrl} & x &= \ln(4x)\\ \Leftrightarrow& e^x &= 4x\\ \Leftrightarrow& \frac{1}{x}e^x &= 4\\ \Leftrightarrow& -xe^{-x} &= -\frac{1}{4}\\ \Leftrightarrow& W(-xe^{-x}) &= W(-\frac{1}{4})\\ \Leftrightarrow& -x &= W(-\frac{1}{4})\\ \Leftrightarrow& x &= -W(-\frac{1}{4})\\ \Leftrightarrow& x & \approx 0.357402956 \end{array}\]
Example \(x^2e^x = 2\)
\[\begin{array}{rrl} & x^2e^x &= 2\\ \Leftrightarrow& \sqrt{x^2e^x} &= \sqrt{2}\\ \Leftrightarrow& xe^{\frac{x}{2}} &= \sqrt{2}\\ \Leftrightarrow& \frac{x}{2}e^{\frac{x}{2}} &= \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}\\ \Leftrightarrow& W\left(\frac{x}{2}e^{\frac{x}{2}}\right) &= W\left(\frac{1}{\sqrt{2}}\right)\\ \Leftrightarrow& \frac{x}{2} &= W\left(\frac{1}{\sqrt{2}}\right)\\ \Leftrightarrow& x &= 2W\left(\frac{1}{\sqrt{2}}\right)\\ \Leftrightarrow& x & \approx 0.901201032 \end{array}\]
Example \(x+e^x = 2\)
\[\begin{array}{rrl} &x +e^x&= 2\\ \Leftrightarrow&e^x&= 2 -x \\ \Leftrightarrow&1 &= (2 -x)^{e^{-x}}\\ \Leftrightarrow&e^2 &= (2 -x)^{e^{2-x}}\\ \Leftrightarrow&W(e^2) &= W((2 -x)^{e^{2-x}})\\ \Leftrightarrow&W(e^2) &= 2 -x\\ \Leftrightarrow&x &= 2 - W(e^2)\\ \Leftrightarrow&x &\approx 0.442854401 \end{array}\]
Example \(3^x + x = 2\)
\[\begin{array}{rrl} &3^x + x &= 2 \\ \Leftrightarrow&3^x &= 2-x \\ \Leftrightarrow&1 &= (2-x) \cdot 3^{-x} \\ \Leftrightarrow&3^2 &= (2-x) \cdot 3^{2-x} \\ \Leftrightarrow&9 &= (2-x) \cdot {e^{\ln(3)}}^{2-x} \\ \Leftrightarrow&\ln(3) \cdot 9 &= \ln(3)(2-x) \cdot e^{\ln(3)(2-x)} \\ \Leftrightarrow&W(\ln(3)\cdot 9) &= \ln(3)(2-x) \\ \Leftrightarrow&x &= 2 - \frac{W(\ln(3)\cdot 9)}{\ln(3)} \\ \Leftrightarrow&x &\approx 0.41769372 \end{array}\]
Derivative of the Lambert \( W \) Function
The derivative of the Lambert \( W \) function is valid only for \( x \neq 0 \), as the defining equation involves division by \( x \). Starting from the implicit relationship introduced earlier:
\[ x = W(x)e^{W(x)}, \]
we differentiate both sides with respect to \( x \):
\[ 1 = \frac{d}{dx} \left( W(x) e^{W(x)} \right). \]
Applying the product rule:
\[ 1 = W'(x)e^{W(x)} + W(x) W'(x) e^{W(x)}. \]
Factoring \( W'(x)e^{W(x)} \), we obtain:
\[ 1 = W'(x)e^{W(x)} \left( 1 + W(x) \right). \]
Rearranging gives:
\[ W'(x) = \frac{1}{e^{W(x)} \left( 1 + W(x) \right)}. \]
Substituting \( e^{W(x)} = \frac{x}{W(x)} \) to rewrite in terms of \( x \) and \( W(x) \):
\[ W'(x) = \frac{W(x)}{x \left( 1 + W(x) \right)}. \]
This compact formula provides \( W'(x) \), highlighting the intricate behavior of \( W(x) \) under differentiation.