Contents
raw book

A \(4 \times 4\) Homogeneous Transformation Matrix encapsulates translation, rotation, and scaling operations. This matrix is defined as:

\[\mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}\]

where:

Extracting Translation

The translation vector \(\mathbf{t}\) can be directly extracted from the right column of matrix \(\mathbf{T}\):

\[\mathbf{t} = \begin{bmatrix} \mathbf{T}_{14} \\ \mathbf{T}_{24} \\ \mathbf{T}_{34} \end{bmatrix}\]

Extracting Rotation and Scaling

To separate the rotation and scaling components from the \(3 \times 3\) matrix \(\mathbf{R}\), we use Singular Value Decomposition (SVD) if necessary. Before performing SVD, we check if \(\mathbf{R}\) is already a valid rotation matrix.

Validating the Rotation Matrix

A square matrix \(\mathbf{R}\) is a valid rotation matrix if it satisfies:

  1. Orthonormality: The columns (and rows) of \(\mathbf{R}\) are mutually perpendicular and have unit length, which is the case iff \(\mathbf{R}^T\) equals \(\mathbf{R}^{-1}\), or: \[\mathbf{R}^T \mathbf{R} = \mathbf{I}\]
  2. Determinant: The determinant of \(\mathbf{R}\) is \(+1\) and therefore preserve lengths and angles: \[\det(\mathbf{R}) = 1\]

If \(\mathbf{R}\) is not a valid rotation matrix, we decompose it using SVD:

\[\mathbf{R} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T\]

where:

The rotation matrix \(\mathbf{R}_{\text{rot}}\) can be reconstructed as:

\[\mathbf{R}_{\text{rot}} = \mathbf{U} \mathbf{V}^T\]

Extracting Rotation Angles

To extract the rotation angles around the X, Y, and Z axes from the rotation matrix, we use the Euler angles representation (ZYX convention).

Given the rotation matrix

\[ \mathbf{R}_{\text{rot}} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \]

The Euler angles can be extracted as:

Implementation in Python

Here is a compact Python example demonstrating the extraction of translation, rotation, and scaling components from a homogeneous transformation matrix, and obtaining the rotation angles:

import numpy as np

def rotation_matrix_to_euler_angles(R):
    """
    Convert a rotation matrix to Euler angles in the ZYX order.
    :param R: 3x3 rotation matrix
    :return: tuple of Euler angles (yaw, pitch, roll)
    """
    assert R.shape == (3, 3), "Input matrix must be 3x3"
    yaw = np.arctan2(R[1, 0], R[0, 0])
    pitch = np.arcsin(-R[2, 0])
    roll = np.arctan2(R[2, 1], R[2, 2])
    return yaw, pitch, roll

# Define the rotation angle in radians
theta = np.radians(30)

# Create a rotation matrix around the Z-axis
R_z = np.array([
    [np.cos(theta), -np.sin(theta), 0],
    [np.sin(theta), np.cos(theta), 0],
    [0, 0, 1]
])

# Introduce scaling factors for each axis
scaling_factors = np.array([1.2, 0.8, 1.0])
S = np.diag(scaling_factors)

# Combine rotation and scaling
R_combined = np.dot(R_z, S)

# Define a homogeneous transformation matrix with translation
T = np.array([
    [R_combined[0,0], R_combined[0,1], R_combined[0,2], 1],
    [R_combined[1,0], R_combined[1,1], R_combined[1,2], 2],
    [R_combined[2,0], R_combined[2,1], R_combined[2,2], 3],
    [0, 0, 0, 1]
])

## Now try to reconstruct the inputs:

# Extract the rotation and scaling matrix R from T
R = T[:3, :3]

# Check if R already is a valid rotation matrix
if np.allclose(np.dot(R.T, R), np.eye(3)) and np.isclose(np.linalg.det(R), 1.0):
    R_rot = R
    scaling = np.ones(3)
else:
    # Perform SVD on the extracted matrix
    U, Sigma, Vt = np.linalg.svd(R)
    R_rot = np.dot(U, Vt)
    scaling = Sigma

# Extract the translation vector t from T
t = T[:3, 3]

# Extract Euler angles from the rotation matrix
yaw, pitch, roll = rotation_matrix_to_euler_angles(R_rot)

# Print results
print("Extracted Rotation Matrix R_rot:")
print(R_rot)
print("Extracted Scaling Factors:")
print(scaling)
print("Extracted Translation Vector t:")
print(t)
print("Extracted Euler Angles (yaw, pitch, roll):")
print(np.degrees([yaw, pitch, roll]))